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Resonant interaction of modulational instability with a periodic soliton
in the Davey-Stewartson equation
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The time evolution of the Benjamin-Feir unstable mode in two dimensions is studied analytically when it
resonates with a periodic soliton. The condition for resonance is obtained from an exact solution to the
hyperbolic Davey-Stewartson equation. It is shown that a growing-and-decaying mode exists only in the
backward~or forward! region of propagation of the periodic soliton if the resonant condition is exactly
satisfied. Under a quasiresonant condition, the mode grows at first on one side from the periodic soliton, but
decays with time. The wave field shifts to an intermediate state, where only a periodic soliton in a resonant
state appears. This intermediate state persists over a comparatively long time interval. Subsequently, the mode
begins to grow on the other side from the periodic soliton.
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I. INTRODUCTION

A uniform train of weakly nonlinear deep water waves
unstable to infinitesimal modulational perturbations, which
known as the Benjamin-Feir instability@1#. The time evolu-
tion of the unstable wave is governed by the nonlin
Schrödinger ~NLS! equation@2,3,4#. Solving the NLS equa-
tion numerically with periodic boundary condition, Lak
et al. @5# found that the unstable wave train recovers its i
tial state after modulation: the so-called Fermi-Pasta-U
recurrence. This problem was solved analytically by Ta
and Watanabe@6#.

Weakly nonlinear waves having two-dimensional prope
were studied by several authors@2,7,8#. The motion of a
wave packet in a large scale of time was found to obey
Davey-Stewartson~DS! equation@8#:

iul1puxx1uyy1r uuu2u22uv50,

vxx2pvyy2r ~ uuu2!xx50, ~1!

wherep561 andr is constant. Equation~1! with p51 or
p521 are called the DS I and DS II equations, respective

Tajiri and Arai @9# obtained the analytical solution to th
DS I equation for modulationally unstable mode as follow

u5u0ei z~g/ f ! , v522~ ln f !xx , ~2!

with

f 512e2Vt1s cosh1~M /4!e22Vt12s,

g512e2Vt1s1 if cosh1~M /4!e22Vt12s12if,

where

z5kx1 ly2vt, v5k21 l 22ru0
2,

h5bx1dy2gt1h0 , V5~b21d2!cot~f/2! ,

g52kb12ld, M5 2/~11cosf!,
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:

sin2~f/2!5~d22b2!/~2ru0
2! ,

ands andu are arbitrary phase constants. We refer to this
a growing-and-decaying mode solution. The solution is n
singular whenM is greater than unity for realf. This con-
dition coincides with the one for the Benjamin-Feir instab
ity:

0,~d22b2!,2ru0
2. ~3!

The solution~2! shows that an unstable mode grows exp
nentially in its early stage. After reaching maximum mod
lation, it vanishes with time to reproduce the initial unmod
lated state.

The resonance of a line soliton and a growing-an
decaying mode was studied by Pelinovsky@10#. Although the
growing-and-decaying mode virtually exists only in a fini
period of time, an infinite phase shift happens to the l
soliton. Its mechanism has been clarified recently by sho
ing that the mode develops only on a half plane divided
the line soliton if the condition for resonance is exactly s
isfied @11#. The change of wave field with time is also inve
tigated for this case under a quasiresonant condition. An
stable mode begins to grow only on one side from
soliton. Their interaction results in a line soliton in a tra
sient state. Subsequently, the mode develops on the o
side of the soliton, which decays finally.

In this paper, we investigate the interaction of t
growing-and-decaying mode with a periodic soliton. T
condition for resonance is obtained analytically and the
teractive development of the waves is discussed.

II. QUASIRESONANCE BETWEEN PERIODIC SOLITON
AND GROWING-AND-DECAYING MODE

The interaction of a periodic soliton with a growing-an
decaying mode is discussed on the basis of the DS I eq
tion. Using theN-soliton solution of Satsuma and Ablowit
@12#, we can get a solution for the present problem as f
lows:

u5u0ei z~g/ f !, v522~ ln f !xx , ~4!

with
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f 512
1

L1L2
ej1 cosh12ej2 cosh21

M1

4L1
2L2

2 e2j11
M2

4
e2j22

1

4
ej11j2H M1

L1L2
ej1 cos~h21C12C2!

1M2ej2 cos~h11C11C2!J 1
1

2L1L2
ej11j2$L1 cos~h11h21C1!1L2 cos~h12h21C2!%1

M1M2

16
e2~j11j2!,

~5!

g512
1

L1L2
ej11 if1r cos~h11 if1i !2ej21 if2 cosh21

M1

4L1
2L2

2 e2j112if1r1
M2

4
e2j212if22

1

4
ej11j21 i ~f1r1f2!

3H M1

L1L2
ej11 if1r cos~h21C12C2!1M2ej21 if2 cos~h11 if1i1C11C2!J 1

1

2L1L2
ej11j21 i ~f1r1f2!

3$L1 cos~h11h21 if1i1C1!1L2 cos~h12h21 if1i1C2!%1
M1M2

16
e2~j11j2!12i ~f1r1f2!, ~6!
where

j15ax1ky2V1t1s1 ,

j252V2t1s2 ,

h15b1x1d1y2g1t1h10,

h25b2x1d2y2g2t1h20,

sin2
f1

2
5

~a1 ib1!22~k1 id1!2

2ru0
2 ,

sin2
f2

2
5

d2
22b2

2

2ru0
2 ,

V152ka12lk2ReH $~a1 ib1!21~k1 id1!2%cot
f1

2 J ,
th
e

06760
g152kb112ld12ImH $~a1 ib1!21~k1 id1!2%cot
f1

2 J ,

V25~b2
21d2

2!cot
f2

2
,

g252kb212ld2 ,

M15

2ru0
2Usin

f1

2 U2

coshf1i2~a21b1
2!1~k21d1

2!

2ru0
2Usin

f1

2 U2

cosf1r2~a21b1
2!1~k21d1

2!

,

M25
2

11cosf2
,

L1eiC15

2ru0
2 sin

f1

2
sin

f2

2
cos

f12f2

2
2 i $~a1 ib1!b22~k1 id1!d2%

2ru0
2 sin

f1

2
sin

f2

2
cos

f11f2

2
2 i $~a1 ib1!b22~k1 id1!d2%

,

L2eiC25

2ru0
2 sin

f1

2
sin

f2

2
cos

f12f2

2
1 i $~a1 ib1!b22~k1 id1!d2%

2ru0
2 sin

f1

2
sin

f2

2
cos

f11f2

2
1 i $~a1 ib1!b22~k1 id1!d2%

.

ac-
Here,u1 , u2 , s1 , s2 are arbitrary real constants andf2 is
assumed real. When we consider the case 0,V2 , 0,a, 0
,k and 0,V1 , the solution a long time before the grow
of the growing-and-decaying mode is approximately giv
by

f 5
M2

4
e2j2H 12ej1 cos~h11C11C2!1

M1

4
e2j1J , ~7!
n

g5
M2

4
e2~j21 if2!H 12ej11 if1r cos~h11 if1i1C11C2!

1
M1

4
e2~j11 if1r !J . ~8!

On the other hand, the solution a long time after the inter
tion is given by
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FIG. 1. The sequence of snap
shots of the quasiresonant intera
tion between periodic soliton and
growing-and-decaying mode. Th
parameters are (k,l )5(1.0,1.0),
(a,k)5(0.42,0.20), (b1 ,d1)
5(0.22,0.45), (b2 ,d2)
5(0.27,0.55), and (f1 ,f2)
5(1/4p,2/9p). The time evolu-
tion is ~a! t527, ~b! t50.0, ~c!
t53.8, ~d! t57.6, and ~e! t
513.0. In this figure,x, y, and u
are all dimensionless.
.
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f 512
1

L1L2
ej1 cosh11

M1

4L1
2L2

2 e2j1, ~9!

g512
1

L1L2
ej11 if1r cos~h11 if1i !1

M1

4L1
2L2

2 e2~j11f1r !.

~10!

Both formulas represent the structures of periodic soliton
Comparing these solutions, we see that the phase of

periodic soliton shifts by the amount ln(L1 L2) @or
2 ln(L1 L2)] due to the interaction with the growing-and
decaying mode. Therefore, (L1L2)5` or 0 may be regarded
as the condition for resonance between periodic soliton
growing-and-decaying mode. In this paper, we limit our d
cussion to the case in whichL1 is infinitely large, namely

D52ru0
2 sin

f1

2
sin

f2

2
cos

f11f2

2
2 i $~a1 ib1!b2

2~k1 id1!d2%50. ~11!

If we expressa, k, b1 , d1 , b2 , andd2 in terms off1 , f2 ,
u1 , andu2 as follows:

a1 ib15 iA2ru0
2 sin~f1/2!sinhu1 ,
06760
he

d
-

k1 id15 iA2ru0
2 sin~f1/2!coshu1 ,

b25A2ru0
2 sin~f2/2!sinhu2 ,

d25A2ru0
2 sin~f2/2!coshu2 ,

Eq. ~11! is rewritten as

D52ru0
2 sin

f1

2
sin

f2

2 H cos
f11f2

2
2cosh~u12u2!J .

~12!

Thus the condition for resonance is expressed in the form

f2562u1i2f1r , u25u1r6~f1i /2!. ~13!

Evaluating Eqs.~5! and ~6! approximately, we can char
acterize the process of interaction separately in the five s
cific periods in time.

(p1) t→2` (before the mode grows!. The solution is
given by Eqs.~7! and ~8!. Only a periodic soliton exists in
the wave field as shown in Fig. 1~a!.

(p2) t;s2 /V2 ;@e2V2t1s2;O(1)#. In this case, the
functionsf andg take approximate forms

f .12ej2 cosh21~M2/4!e2j2, ~14!
1-3
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g.12ej21 if2 cosh21~M2/4!e2~j21 if2!, ~15!

behind the periodic soliton and

f .~M1M2/16!e2~j11j2!, ~16!

g.~M1M2/16!e2~j11j2!12i ~f1r1f2!, ~17!

ahead of the soliton. The solutions corresponding to E
~14!, ~15!, ~16!, and ~17! denote the growing-and-decayin
mode and uniform state, respectively. This indicates that
mode grows only behind the periodic soliton, but does
grow ahead in this stage@Fig. 1~b!#. (p3) t;s2

11/2 ln L1L2 /V2 ,@AL1L2e2V2t1s2;O(1)#. Approximate
forms of Eqs.~5! and ~6! are given by

f .11
1

2L2
ej11j2 cos~h11h21C1!1

M1M2

16
e2~j11j2!,

~18!

g.11
1

2L2
ej11j21 i ~f1r1f2! cos~h11h21 if1i1C1!

1
M1M2

16
e2~j11j2!12i ~f1r1f2!. ~19!

It follows from these expressions that only a periodic solit
in a resonant state forms in the wave field as shown in F
1~c!. The mode which was produced in the backward reg
has already decayed. Thex andy components of wave num
ber, frequency and phase of the soliton area1 i (b11b2),
k1 i (d11d2), V11V21 i (g11g2) and f11f2 , respec-
tively. From the condition~11!, we can obtain

sin2
f11f2

2
5

@a1 i ~b11b2!#22@k1 i ~d11d2!#2

2ru0
2 ,

V11V21 i ~g11g2!

52k@a1 i ~b11b2!#12l @k1 i ~d11d2!#

2$@a1 i ~b11b2!#21@k1 i ~d11d2!#2%cot
f11f2

2
.

These equations give the dispersion relation for the perio
soliton in the resonant state.

(p4)t;s21 ln L1L2 /V2 ;(L1L2ej2;O(1)). The solu-
tions in the backward and forward regions of the perio
soliton are given by
06760
s.

e
t
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f .1, g.1,

and

f .
M1

4L1
2L2

2 e2j1H 12L1L2ej2 cos~h21C12C2!

1
M2L1

2L2
2

4
e2j2J , ~20!

g.
M1

4L1
2L2

2 e2~j11 if1r !H 12L1L2ej21 if2 cos~h21C12C2!

1
M2L1

2L2
2

4
e2~j21 if2!J , ~21!

respectively. Equations~20! and ~21! denote the growing-
and-decaying mode. In this period, the mode is develo
only in the forward region of the periodic soliton as shown
Fig. 1~d!. (p5)t→1`. The solution is given by Eqs.~9! and
~10!, which shows appearance of the periodic soliton af
the growth and decay of the mode as shown in Fig. 1~e!. The
periodic soliton has obtained the phase shift22 ln(L1L2) as a
result of interaction with the growing-and-decaying mode

Similar asynchronous development of the growing-an
decaying mode may occur whenL1→0. The condition for
resonance in this case is given by

f2572u1i1f1r , u25u1r6f1i /2 . ~22!

III. CONCLUSIONS

The nonlinear evolution of a modulational instability
described by a growing-and-decaying mode solution to
DS I equation. We have investigated the time evolution of
resonant interaction between periodic soliton and growi
and-decaying mode. Under a quasiresonant condition,
mode develops first on one side from the periodic solit
After the wave attains the maximum modulation, it returns
the unmodulated initial state. Then, the wave field shifts
an intermediate state affected by the growth and decay of
mode. Only a periodic soliton in the resonant state form
This intermediate state persists over a comparatively l
time interval. Next, the mode starts to grow on the other s
from the periodic soliton.

The existence of periodic soliton changes the evolution
the growing-and-decaying mode drastically as if the perio
soliton dominates the instability in whole region of the wa
field.
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